mirror of
https://github.com/supanadit/short-url.git
synced 2024-11-22 18:26:21 +00:00
181 lines
6.4 KiB
JavaScript
Executable File
Vendored
181 lines
6.4 KiB
JavaScript
Executable File
Vendored
/**
|
|
* Contains methods for transforming point on sphere to
|
|
* Cartesian coordinates using various projections.
|
|
* @class
|
|
*/
|
|
jvm.Proj = {
|
|
degRad: 180 / Math.PI,
|
|
radDeg: Math.PI / 180,
|
|
radius: 6381372,
|
|
|
|
sgn: function(n){
|
|
if (n > 0) {
|
|
return 1;
|
|
} else if (n < 0) {
|
|
return -1;
|
|
} else {
|
|
return n;
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Converts point on sphere to the Cartesian coordinates using Miller projection
|
|
* @param {Number} lat Latitude in degrees
|
|
* @param {Number} lng Longitude in degrees
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
mill: function(lat, lng, c){
|
|
return {
|
|
x: this.radius * (lng - c) * this.radDeg,
|
|
y: - this.radius * Math.log(Math.tan((45 + 0.4 * lat) * this.radDeg)) / 0.8
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Inverse function of mill()
|
|
* Converts Cartesian coordinates to point on sphere using Miller projection
|
|
* @param {Number} x X of point in Cartesian system as integer
|
|
* @param {Number} y Y of point in Cartesian system as integer
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
mill_inv: function(x, y, c){
|
|
return {
|
|
lat: (2.5 * Math.atan(Math.exp(0.8 * y / this.radius)) - 5 * Math.PI / 8) * this.degRad,
|
|
lng: (c * this.radDeg + x / this.radius) * this.degRad
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Converts point on sphere to the Cartesian coordinates using Mercator projection
|
|
* @param {Number} lat Latitude in degrees
|
|
* @param {Number} lng Longitude in degrees
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
merc: function(lat, lng, c){
|
|
return {
|
|
x: this.radius * (lng - c) * this.radDeg,
|
|
y: - this.radius * Math.log(Math.tan(Math.PI / 4 + lat * Math.PI / 360))
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Inverse function of merc()
|
|
* Converts Cartesian coordinates to point on sphere using Mercator projection
|
|
* @param {Number} x X of point in Cartesian system as integer
|
|
* @param {Number} y Y of point in Cartesian system as integer
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
merc_inv: function(x, y, c){
|
|
return {
|
|
lat: (2 * Math.atan(Math.exp(y / this.radius)) - Math.PI / 2) * this.degRad,
|
|
lng: (c * this.radDeg + x / this.radius) * this.degRad
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Converts point on sphere to the Cartesian coordinates using Albers Equal-Area Conic
|
|
* projection
|
|
* @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a>
|
|
* @param {Number} lat Latitude in degrees
|
|
* @param {Number} lng Longitude in degrees
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
aea: function(lat, lng, c){
|
|
var fi0 = 0,
|
|
lambda0 = c * this.radDeg,
|
|
fi1 = 29.5 * this.radDeg,
|
|
fi2 = 45.5 * this.radDeg,
|
|
fi = lat * this.radDeg,
|
|
lambda = lng * this.radDeg,
|
|
n = (Math.sin(fi1)+Math.sin(fi2)) / 2,
|
|
C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1),
|
|
theta = n*(lambda-lambda0),
|
|
ro = Math.sqrt(C-2*n*Math.sin(fi))/n,
|
|
ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n;
|
|
|
|
return {
|
|
x: ro * Math.sin(theta) * this.radius,
|
|
y: - (ro0 - ro * Math.cos(theta)) * this.radius
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Converts Cartesian coordinates to the point on sphere using Albers Equal-Area Conic
|
|
* projection
|
|
* @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a>
|
|
* @param {Number} x X of point in Cartesian system as integer
|
|
* @param {Number} y Y of point in Cartesian system as integer
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
aea_inv: function(xCoord, yCoord, c){
|
|
var x = xCoord / this.radius,
|
|
y = yCoord / this.radius,
|
|
fi0 = 0,
|
|
lambda0 = c * this.radDeg,
|
|
fi1 = 29.5 * this.radDeg,
|
|
fi2 = 45.5 * this.radDeg,
|
|
n = (Math.sin(fi1)+Math.sin(fi2)) / 2,
|
|
C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1),
|
|
ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n,
|
|
ro = Math.sqrt(x*x+(ro0-y)*(ro0-y)),
|
|
theta = Math.atan( x / (ro0 - y) );
|
|
|
|
return {
|
|
lat: (Math.asin((C - ro * ro * n * n) / (2 * n))) * this.degRad,
|
|
lng: (lambda0 + theta / n) * this.degRad
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Converts point on sphere to the Cartesian coordinates using Lambert conformal
|
|
* conic projection
|
|
* @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a>
|
|
* @param {Number} lat Latitude in degrees
|
|
* @param {Number} lng Longitude in degrees
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
lcc: function(lat, lng, c){
|
|
var fi0 = 0,
|
|
lambda0 = c * this.radDeg,
|
|
lambda = lng * this.radDeg,
|
|
fi1 = 33 * this.radDeg,
|
|
fi2 = 45 * this.radDeg,
|
|
fi = lat * this.radDeg,
|
|
n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ),
|
|
F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n,
|
|
ro = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi / 2 ), n ),
|
|
ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n );
|
|
|
|
return {
|
|
x: ro * Math.sin( n * (lambda - lambda0) ) * this.radius,
|
|
y: - (ro0 - ro * Math.cos( n * (lambda - lambda0) ) ) * this.radius
|
|
};
|
|
},
|
|
|
|
/**
|
|
* Converts Cartesian coordinates to the point on sphere using Lambert conformal conic
|
|
* projection
|
|
* @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a>
|
|
* @param {Number} x X of point in Cartesian system as integer
|
|
* @param {Number} y Y of point in Cartesian system as integer
|
|
* @param {Number} c Central meridian in degrees
|
|
*/
|
|
lcc_inv: function(xCoord, yCoord, c){
|
|
var x = xCoord / this.radius,
|
|
y = yCoord / this.radius,
|
|
fi0 = 0,
|
|
lambda0 = c * this.radDeg,
|
|
fi1 = 33 * this.radDeg,
|
|
fi2 = 45 * this.radDeg,
|
|
n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ),
|
|
F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n,
|
|
ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ),
|
|
ro = this.sgn(n) * Math.sqrt(x*x+(ro0-y)*(ro0-y)),
|
|
theta = Math.atan( x / (ro0 - y) );
|
|
|
|
return {
|
|
lat: (2 * Math.atan(Math.pow(F/ro, 1/n)) - Math.PI / 2) * this.degRad,
|
|
lng: (lambda0 + theta / n) * this.degRad
|
|
};
|
|
}
|
|
}; |